
CS 135 Fall 2014
Bright, Holtby, Kharal, Lizotte, Orchard, Tompkins

Assignment: 1
Due: Tuesday, September 16, 2014 9:00 pm

Language level: Beginning Student
Files to submit: functions.rkt, conversion.rkt, grades.rkt,

density.rkt
Warmup exercises: HtDP 2.4.1, 2.4.2, 2.4.3, and 2.4.4
Practise exercises: HtDP 3.3.2, 3.3.3, and 3.3.4

Assignment Policies

• No assignments will be accepted beyond the submission date. No exceptions.

• For this and all subsequent assignments, the work you submit must be entirely your own.

• Do not look up either full or partial solutions on the Internet or in printed sources.

• Make sure to follow the style and submission guide available on the course Web page when
preparing your submissions. Please read the course Web page for more information on
assignment policies and how to submit your work.

• For this assignment only, you do not need to include the design recipe in your solutions. A
well-written function definition is sufficient.

Grading

• This assignment (or any later one) will not be graded and no marks will be recorded
until you have first received full marks in Assignment 0.
• Completing A0 after the A1 deadline will result in a mark of 0 on Assignment 1.

• Your solutions for assignments will be graded on both correctness and on readability.

Correctness

• Be sure to check your basic test results after each submission! They will be emailed to
your student account within a few minutes of your assignment submission.

• If you do not get full marks on the basic test, then your assignment will not be markable by
our automated tools, and you will receive a low mark (probably 0) for the correctness portion
of the assignment.

• On the other hand, getting full marks on the basic test does not guarantee full correctness
marks. It only means that you spelled the name of the function correctly and passed some
extremely trivial tests.

• Thoroughly testing your programs is part of what we expect of you on each assignment.

CS 135 — Fall 2014 Assignment 1 1



Readability

• You should use constants where appropriate.

• All identifiers should have meaningful names, unless specifically stated otherwise such as in
question 1.

Here are the assignment questions you need to submit.

1. Translate the following function definitions into Racket, using the names given. Place your
solutions in the file functions.rkt.

Note that when you are asked to translate a function, it should be a direct translation. When
asked to translate (a + b) the translation is (+ a b), not (+ b a). When translating x2, either
(sqr x) or (∗ x x) is acceptable.

(a) The volume of a cylinder (such as the volume of a cylindrical ice bucket of radius r and
height h):

cylinder-volume(r, h) = π × r2 × h

(Hint: just use the built-in Racket constant pi).

(b) An example from finance (future value of an investment of principal p with compound
interest rate r after t terms):

future-value(p, r, t) = p× (1 + r)t

(Hint: make sure you know the difference between the built-in Racket functions exp
and expt)

(c) An example from physics (height of an object thrown straight up with velocity v after
time t):

height(v, t) = v × t− g × t2

2

where g is the constant 9.8 (acceleration due to gravity)

2. The constant 9.8 (used above) represents the acceleration due to gravity in units of metres
per second squared (m/s2). This is a metric unit; in the United States, so-called “imperial”
units are usually used instead of metric. There, the constant g would likely have the value
of 32, in units of feet per second squared (ft/s2). As you can see, it is very important
to know what units you’re working with when writing programs that deal with real-world
measurements. In fact, NASA’s Mars Climate Orbiter crashed into Mars in 1999 because
some of the programmers were assuming metric units while others were assuming imperial
units!1

1ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf

CS 135 — Fall 2014 Assignment 1 2

ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf


In this question, you will write functions to convert between metric and imperial measure-
ment units. Place your solutions in the file conversion.rkt. You should use meaningful
constant names. Do not perform any “rounding”. You do not have to worry about “divide by
zero” errors.

(a) In the United states, liquids in beverage containers are often measured in fluid ounces.
Write a function floz→ml that consumes a volume in fluid ounces and produces the
equivalent volume in millilitres. You must use the fact that there are 128 fluid ounces
in a gallon, and one gallon is 3.78541 litres. (Remember that in your function name,
→ is typed as ->.)

(b) In the United states, it is common to measure the fuel efficiency of a vehicle in miles-
per-gallon (mpg). In Canada, it is more common to measure fuel efficiency in litres-per-
100km. Write a function mpg→lp100km which consumes a fuel efficiency in miles-
per-gallon and produces the same efficiency in units of litres-per-100km. You must use
the fact that one mile is 1.60934 km.

(c) Write the function lp100km→mpg that performs the reverse conversion.

3. The end of the Fall term has come, and you decide to use Racket to calculate your final
grade in CS 135. For this question, you do not need to worry about the course requirements
of passing the exam and assignment components of the course separately. You may assume
that all input marks are percentages between 0 and 100, inclusive.

Place your solutions in the file grades.rkt.

(a) Write a function cs135-exam-grade that consumes three numbers (in the following
order):

• first midterm grade,
• second midterm grade, and
• the final exam grade

This function should produce the weighted exam average in the course (as a percentage
in the range 0 to 100, but not necessarily an integer). You should review the mark
allocation described on the course website.

(b) Write a function cs135-final-grade that consumes three numbers (in the following or-
der):

• class participation grade,
• weighted assignment grade, and
• the weighted exam grade.

This function should produce the final grade in the course (as a percentage in the range
0 to 100, but not necessarily an integer).

(c) write a function final-cs135-exam-grade-needed that consumes two numbers: the first
midterm grade, and the second midterm grade (in that order). This function produces
the minimum mark needed on the final exam to obtain a 50% weighted exam average
(as a percentage in the range 0 to 100, but not necessarily an integer).

CS 135 — Fall 2014 Assignment 1 3



4. 5% Bonus: Lately, Finn has been very curious about buckets of ice water and their proper-
ties. He has been reviewing the density of water and ice. It turns out the density of water in
both states depends on many factors, including the temperature, atmospheric pressure, and
the purity of the water.

As an approximation, Finn has written the following function to determine the density of the
water (or ice) in kg/m3 as a function of temperature t in Celsius (−273.15 ≤ t ≤ 100):

water-density(t) =

{
999.97 if t ≥ 0

916.7 if t < 0

Write a function water-density that consumes an integer temperature t and produces either
999.97 or 916.7, depending on the value of t. However, you may only use the features of
Racket given up to the end of Module 1. You may use define and mathematical functions,
but not cond, if, lists, recursion, Booleans, or other things we’ll get to later in the course.
Specifically, you may use any of the functions in section 1.5 of this page:
http://docs.racket-lang.org/htdp-langs/beginner.html
except for the following functions, which are NOT allowed: sgn, floor, ceiling, round.

Place your solution in the file density.rkt. Note that bonus questions are typically “all
or nothing”. Incorrect or very poorly designed solutions may not be awarded any marks.

This concludes the list of questions for you to submit solutions. Don’t forget to always check your
email for the basic test results after making a submission.

Challenges and Enhancements

The teaching languages provide a restricted set of functions and special forms. There are times
in these challenges when it would be nice to use built-in functions not provided by the teaching
languages. We may be able to provide a teachpack with such functions. Or you can set the language
level to “Pretty Big”, which provides all of standard Racket, plus the special teaching language
definitions, plus a large number of extensions designed for very advanced work. What you lose
in doing this are the features of the teaching languages that support beginners, namely easier-to-
understand error messages and features such as the Stepper.

This enhancement will discuss exact and inexact numbers.

DrRacket will try its best to work exclusively with exact numbers. These are rational numbers; i.e.
those that can be written as a fraction a/b with a and b integers. If a DrRacket function produces
an exact number as an answer, then you know the answer is exactly right. (Hence the name.)

DrRacket has a number of different ways to express exact numbers. 152 is an exact number, of
course, because it is an integer. Terminating decimals like 1.60934 from question 2 above are
exact numbers. (How could you determine a rational form a/b of this number?) You can also type

CS 135 — Fall 2014 Assignment 1 4

http://docs.racket-lang.org/htdp-langs/beginner.html


a fraction directly into DrRacket; 152/17 is an exact number. Scientific notation is another way to
enter exact numbers; 2.43e7 means 2.43× 107 = 24300000 and is also an exact number.

It is important to note that adding, subtracting, multiplying, or dividing two exact numbers always
gives an exact number as an answer. (Unless you’re dividing by 0, of course; what happens then?)
Many students, when doing problems like question 2, think that once they divide by a number like
1.60934, they no longer have an exact answer, perhaps because their calculators don’t treat it as
exact.

But try it in DrRacket: (/ 2 1.60934). DrRacket seems to output a number with lots of decimal
places, and then a “...” to indicate that it goes on. But right-click on the number, and a menu will
allow you to change how this (exact) number is displayed. Try out the different options, and you’ll
see that the answer is actually the exact number 100000/80467.

You should use exact numbers whenever possible. However, sometimes an answer cannot be
expressed as an exact number, and then inexact numbers must be used. This often happens when
a computation involves square roots, trigonometry, or logarithms. The results of those functions
are often not rational numbers at all, and so exact numbers cannot be used to represent them. An
inexact number is indicated by a #i before the number. So #i10.0 is an inexact number that says
that the correct answer is probably somewhere around 10.0.

Try (sqr (sqrt 15)). You would expect the answer to just be 15, but it’s not. Why? (sqrt 15) isn’t
rational, so it has to be represented as an inexact number, and the answer is only approximately
correct. When you square that approximate answer, you get a value that’s only approximately 15,
but not exactly.

You might say, “but it’s close enough, right?” Not always. Try this:

(define (addsub x)
(− (+ 1 x) x))

This function computes (1 + x)− x, so you would expect it to always produce 1, right? Try it on
some exact numbers:

(addsub 1)
(addsub 12/7)
(addsub 253.7e50)

With exact numbers, you always get 1, as expected. What about with inexact numbers?

(addsub (sqrt 15)) => #i1.0, which is fine. (addsub (sqrt 2)) => #i0.9999999999999998,
which is close to 1; that’s more or less what we expect from inexact numbers. But (addsub (exp
40)) => #i0.0. That answer is very different from 1! Can you find inputs which give different
answers from these?

If you go on to take further CS courses like CS 251 or CS 371, you’ll learn all about why inexact
numbers can be tricky to use correctly. That’s why in this course, we’ll stick with exact numbers
wherever possible.

CS 135 — Fall 2014 Assignment 1 5


